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ABSTRACT

‘The self consistent field problem of a '"collisionless', fully
ionized, single component plasma is treated by means of a Green's
function techniquei The latter describes the streaming motion of
non-interacting electrons in a time dependent, homogeneous, applied

electric field. A formal perturbation series solution to the

Liouville equation, obtained by iteration, is then considered in

the limit of large number and volume. For a problem time scale of the

order of the inverse plasma frequency, only the terms in the
perturbation series describing the collective interaction survive
the limiting process, and therefore a time-reversible, hierarchy
of integral equations is recovered for the various orders of
distribution functions. The non-linear integral Vlassov equation
follows from the first member of this hierarchy and a factorization
assumption on the initial distribution function.

An approximate solution to the Vlassov equation is developed
in terms of the solutions to the linearized form of this equation.

In these calculations, the Green's function has been simplified




by averaging it over a period of the external field.

Finally, after defining the inverse dielectric function by the
relationship between the '"dressed" and "free' electron number
densities, a correction term of order e2 to the usual linear
theory result is found. It is expected that this correction will
be found useful in subsequent studies of non-linear electrical

behavior in plasmas.

This research was carried out under Grant NsG-275-62 from the
National Aeronautics and Space Administration.



An Integral Equation Approach to the Plasma

Self Consistent Field Problem

The collective motion of ionized gases has received much
attention in recent years, both on its intrinsic merit as a fascinating
aspect of matter, and from a utilitarian standpoint, in application
to various plasma experiments. During this period, a number of
1,2

)3 have been suggested, and their results

5

plasma kinetic theories
applied with varying degrees of success to the large body of
experimental data that now exists. Both the inclusion of dissipative
collisional mechanisms and the iack of a solution to the full self-
consistent field problem have presented formidable barriers to
complete theoretical understanding of a fully ionized plasma. However,
the linearized self-consistent field problem, first obtained by
Vlassov4 in 1938, has provided great insight into the generation
of plasma oscillations, and the stability of plasmas with respect
to small perturbations.5 It is upon this success that further
investigation of the full non-linear self consistent field problem
is predicated. N
Three major results are developed in this paper. The first is
the derivation of the full, self-consistent field expression
(Vlassov equation) which describes the evolution of the singlet
distribution function. The point of attack is based upon the
Green's function technmique so elegantly exploited by Balescu§ In
this approach, a formal solution to the Liouville equation is

developed in the form of an infinite perturbation series reminiscent



of similar series in the quantum theory of scattering. With arguments
on the form of this series in the limit of large confining volume and
particle number and a choice of the initial distribution, the result
may be summed in closed form. By the choice of the representation,
however, we avoid the use of diagrammatic schemes to sum the
perturbation series, and thus, (hopefully) preserve some clarity of
the development. It should be noted, however, that the essential
physical arguments of the derivation which limit the valid time
regime and the choice of initial functions are identical with those
of Balescu,6

The second result is the inclusion of a time dependent,
externally applied electric field in the Green's function, that,
in a certain approximation, may be carried into the solution of the
problem.

Finally, the third result is a suggested approximate solution
to the full Vlassov equation. This solution is written in terms of
a correction to the standard dielectric function derived from the

well-known linear Vlassov equation.

1. Derivation of the Integral Vlassov Equation

Let us consider a plasma confined in a large cubical box of
volume V. This plasma is idealized as a completely ionized gas
consisting of N free electrons and a fixed positive neutralizing
background, all in the presence of an external electric field, E(t).
We define the N particle distribution function in the usual

manner in the phase space of the electrons to be:




i. bounded in x’
ii. periodic with period V1/3 in all coordinates
iii. symmetric under interchange of phases

iv. normalized to unity.

The set of lower order distribution functions are defined as

(M)
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The evolution of f(N) is given by the Liouville equation:
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where MKS wunits are used.
The last equation has been written with the streaming terms

on the left and the Coulomb interaction on the right. It is

convenient to introduce operator notation and write this in the form;

LO‘FM)(T,f) - E:LH f{N)(T,‘(:) (2)

where Lo and L1 are identified with the streaming and scattering

operators on the left and right side of Eq. 1 respectively; 6 is
the "strength' of the Coulomb repulsion,

g: - e
re,m,



and T represents the set of phases, {Xi’vi} ) i = 1, ....,N.

The Green's function associated with the streaming operator, Lo 5
is defined as a bounded function of the relative velocities and
periodic as previously described for the N particle distribution

function. It satisfies the following equation;

ngét,t[rjt’) = Str-z)d(t-t) 3

In addition the Green's function satisfies the important causal
property;
/

3(T,tlt’,t’)‘=0 l"F t<t
The solution to Eq. 2 is obtained by an application of Green's
theorem, and is written in terms of the adjoint Green's function.
The latter quantity is the solution to an equation similar to Eq. 3,
but with the streaming operator replaced by its adjoint. In addition,
the adjoint Green's function is anticausal, and hence is a so-called
"advanced'" solution which relates events to sources before they
happen. For this particular case, the adjoint operator is simply
the negative of Lo , or if the external electric field is
symmetric in time, is equal to LO(-t). The boundary conditions
and a further application of Green's theorem show that the adjoint
Green's function is simply the transposed Green's function itself,

and thus the solution to Eq. 2 may be written down:
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where the reciprocal kernel 7%fﬂQtt[ﬁ0)is defined by the following

integral equation:

-1 -
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Eqs. 4 and 5 define a complete formal solution to the problem;
however, in order that these results may be used to obtain equations
for the lowest order distribution functions, we must integrate

Eq. 4 over all but a few phases. This procedure requires a

knowledge of the contractions of the reciprocal kernel, Eq. 5 and

an explicit form of the streaming or 'free particle'" Green's function,
defined by Eq. 3. Let us examine the latter point.

As is well known, the solution to the streaming equation:

)
('a%t”a%*ra%)?zo ,

is any function y(u,w,t,t'), where

t E_ .
U= (x-2+ f v(r)dr) 5 W= (veve | Floydr); (2,v°) is the mitial phase
¢ £’ ) Point.

and the precise form of y is determined by the initial condition
and the boundary conditions. In particular, the Green's function

solution to Eq. 3 for a single particle, has the form;7
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where sz't/) is the Heavyside function. Since the streaming
operator, by definition, does not contain interactions between
particles, it is clear that the N particle Green's function is
simply a product of the individual one particle functions. Thus the
integrals of the N particle Green's function over N-s particle
phases simply result in an s-particle Green's function.

There is another useful property of importance in the evaluation
of Eq. 4. Eq. 1 shows that the Coulomb scattering operator is a sum
over all pairs of particles. Let us denote one of these operators
as qu. Now this quantity has the property that if 3# is any

oY
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function obeying the boundary conditions on

fO(TzJ:h)_“)m Lr%W/éj,lz,...,m) <0 if Pt & {L}I;Iz“.,m}

where dzhﬁhrj"7 is the integration over ngv“>”7 phases. This
result follows from the velocity boundary conditions and the form of
qu as a divergence in velocities.

By a straight-forward calculation, using the properties
discussed above, and the definition of a contracted distribution
function, Eq. v , one may show that the pair distribution function

may be written in the form of the following infinite series;
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The notation used in this equation is the following: Greek letters
label the pair of particles, Roman letters are dummy indices; the
Green's functions are written in contracted form, and any integration
to the immediate left of the latter is understood to operate on the
second set of indices. The pair scattering operator notation,

Labc...d;g symbolizes

Lla.bc..‘..dsg = Laﬁ +{~¢B§*Lc§+°'° “ZJOI?

)

A similar infinite series representation for f( is easily
obtained in the same manner.

To this point, all manipulations have been formal, and none
of the information contained in Eqs. 4 and 5 has been lost.
In particular, the set of N expansions for all of the

distribution functions is completely equivalent to the original

pair of integral equations. In fact, upon comparison of
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the various series expansions for the different distribution functions,
. , . 8
one easily recovers the BBGKY hierarchy equationms. In particular,

one find that

§%t)= [z ;.00 f %) o fdt gt ) L[yl {70,
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| This result, of course, also follows from a straightforward partial
integration of the Liouville equationm.

Information loss amd—the eventual summation of the perturbation
series representation for the distribution functions follow from
consideration of the limit N o0 , Voo , N/V = n, and from
a statement on the form of the distribution function at t = O.
Examination of Eq. 8 shows that each coefficient of F? consists
of a series of terms containing no sums over dummy particles, ane
sum, two sums, etc., up to the order p - Each sum is of order N,

P

and thus the only contribution to the coefficient of F that survives

| the limiting process is the one term with the maximum number of sums.
After replacing the sums by N minus the number of excluded dummy
particles, the remaining infinite series now represents the con-
tribution to the distribution function from the collective inter-
action, and is the dominant effect in a dilute plasma. The validity
of the limiting procedure does depend on the time scale however;

* in particular it is valid for times short with respect to a hydro-
dynamic time scale. Terms which give the growth and decay of

correlations are not accounted for, as they contribute only to the

perturbation series at later times and are lost in the limiting




procedure.

Let us digress briefly on the matter of time scales. The
collective motion of a plasma is associated with a characteristic
time made up of the constants; the electron mass, the number density
and the square of the charge. The time, which is the period of the
longitudinal oscillations of the electrons against the fixed ion

background is
%
'{lP = (m €o 2T
he>

On the other hand, the characteristic diffusion (or hydrodynamic)

time for electrons executing Brownian motion in a positive ion

lattice is

thw m (‘zT)%e.,/(n e)

Now, from these two time scales, we may define the plasma temperature

and mean number density such that the ordering

fP < th

holds which, in turn, implies that
3
1/(n).0)<1

where

AD =(_€2-k-]: I/Z‘
ne?

is the characteristic length (Debye length) for separation of the

electrons from the ion background.
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The dimensionless cluster, 1/n ),3

D is the conventional plasma

coupling parameter and corresponds to E in a dimensionless theory.
Since we.assume the ordering given above as defining the mean state

of our plasma, we shall also consider F to be a "small' parameter,
even though in a true sense this is meaningless. We note also that

.; is the only parameter explicitly appearing in our treatment,
which again is a result of the choice of the particular perturbation
treatment.

The growth and decay of naturally occurring correlations during
the evolution of a plasma from its initial state gradually
obliterates the "memory'" of this state, and determines the plasma's
irreversible behavior. A description of the plasma is simple only
at times before correlations have developed or changed; or when a
gas is very near equilibrium and the correlation pattern is changing
very slowly. In the present treatment, we consider the former case.
This analysis then leads to time reversible equations which do not
approach equilibrium. At most such a description gives the
streaming of electrons in an external and self consistent field.

In fact, our perturbation series may be interpreted as the
perturbation of the streaming trajectories of electrons in an
applied field due to the self consistent contribution. Under the
restrictions discussed above, the most general self-consistent field
equation describing the evolution of the singlet distribution
function is the non-linear Vlassov equation, and it is our next

task to prove that this equation follows from a summation of the

perturbation expansion.
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Let us turn now to the results of our limit procedure. We may
write the solution for an s-order distribution function in the

following compact form:

, - p(SHP)
o ). t) = Ic{tj ?(o(,,.,. «S,t,t)2§ K%, )4, ,}P3l:,,)f f(d,,,_,.,s,(,,,lr,O)
for all sz1 (10)

where the sum over p 1is the expansion of the reciprocal kernel in
powers of the coupling parameter, and connects particle states

. ] . -
dpy. ol AL time t with states Atae s by p at t = 0. The kernel

iterates, in turn are defined by the following:

Kty s [£,6)= S (E-E7) (11-a)

0 / (11"b)
K ' ("(I)an)"(sl‘e]g' £Jtl)= u (d,,," 0(3511 /41;-.) 0(3 [1jt_,t )

(11-¢)

K ks s 3= [ Uttt 4 Lleoits s btV K s 11y, 3 £117)

The quantity U (d"",,(sm/dh_"dslﬂf,tjappearing in the latter equation is

defined as

’U(at,,,,,a(’i[' /‘(“").(sltaf)f‘) - Ic['[l’ L “4951"[ %(d,, Wi .01, ’) (12)

%Py

and may be interpreted as the propagation of the cluster

from time t to time t  and then interaction of particle 11
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with the remaining %y ypee) ds particles as read from right to left.

)
The properties 11-a), 1ll-c) and Eq. 12 may be used once in Equation

10 to give, after the relabelling p-1->p !

§CS)(°(”"’°(§J£): £§S)(d1"')d$:t) t {Jolr‘/im&'s J‘dt, 3 (0(1),.., O(S)’ Lf/) J Oh:’(! L dlw-)'(s.;L

(13)

é(i,..,ds I{,..,[P'ﬂ) 0)}

(p¥str)
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where fés) is the unperturbed distribution function obtained by
integrating the s-particle Green's function multiplied by the initial
distribution. In the above equation, the quantity in the braces is

just f(s+l)

from Eq. 10. Thus we have shown that the choice of
perturbation expansion retains the BBGKY hierarchy. This result is
consistent with the time reversibility of the plasma description.

We shall now consider the pair of equations for the singlet and

pair distribution functions as follows:

(14)

Flat) =f, t) e B fuz! fo(t'? (5 b, t) [T, Ly | laty5t)

and

afyydy

Fltst)e £370a,8) gt d, g3t )iz, L, [t o

oo (15)
. ? (adify tt") 12.;0 F?/{ (ﬁ)(d L, Ms >"°)13*2 5é”)’[lzﬂ)(""'jn---)lf*z}o)




As stands, this set of equations is not closed; but becomes so if an
additional argument on the form of the initial distribution function
is made. By analogy with an equilibrium cluster expansion, f(3'3)

may be expanded in powers of ? as follows:

(16)

/0) —iff Mk,O) + FZ @iy, 1/,0)/ )( //‘,0) 1F2m (1,5«

alllja“ns ('j 4£J

Higher terms represent all poséible patterns of three, four, etc.,

13

)

particle correlations. Thus to lowest order in the coupling parameter;

» 3t
f(ga(o)'— /ﬁ/ Flh,0) (17)
=0

The rejection of terms involving correlations is consistent with our
assumption that % is a "small" parameter which in turn, rests upon
the time scale, number density and temperature of the plasma as
described above.

Now from Eqs. 15 and Eq. 17, we may prove that for the choice
of the perturbation series valid for times short with respect to
hydrodynamic times, the pair distribution function factors if the
initial distribution function is a product of singlet functions.
Eq. 15 may be written in terms of the U operators explicitly, but
for our purposes it is more convenient to regroup the perturbation

L)

series as:

(L) (gL)(gl) v.vvvivvnnnn
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We indicate this grouping by the letter W and also define:

F9Ug t) = lim 5% 1U0s, )

Mao00

where:

M
n)fm([,,,x,, E) =510, e ) ; F? [dt, - [ Dlt?a WILLILE: 556t )
- (t=t)

. §t
X Wuol;!,_llo!,jgspg 4 61,{-2) oo W({a[, ”‘I /-la[l---! j}’ t 5 t -t t ) I/ go (!k)t )
) B g §t13 =45 ko {

(1) (18)

and f is given by:

o

f, 6,t)= fdn ’3 («;t) fm(o(,O) (19)

(1

We now show that W operating on the product of £ 's preserves

their factorization.

el

To begin with, we observe that Eq. 18 gives as a limit
in M where the latter indicates the total number of scattering
events (maximum power of t? ) among the progenitor (dummy) particles

e

giving rise to and does not depend on the order in which these
events take place. Eq. 19 is the special case of a distribution
function unmodified by coulomb scattering, and may be generalized
in definition in the following way: If m is an integer giving

. . 4 .
the total number of scattering events among particle of S progenitors

(including the interaction explicitly shown), then:

Fomtat)= ' 2, [dE[dr) Qi b 1) [ L oyt iy (1)
m2

(20)




The sum with the constant weight of 1/m in the definition gives each
. 1 , . .

way of forming f((;) from the previous m-1 interactions an equal

contribution. This expression is a natural extension of Eq. 19 in

light of the independence of the limit M on the particular sequence
, . . . (2) . .

of interactions giving rise to f . Since the integer m counts

the number of coulomb interactions, it is the power of F that appears

. e . . 1
in the infinite series expansion of f( ):

¥'”(d,t):f Felie) (21)
m

The proof of the theorem then consists in showing that f(z) factors
in a product of two such series.
Consider the term in Eq. 18 for q = p. From right to left, the

last W operating on the product of initial distribution functions is:

)(‘(/) {Ik) tP)

ﬁ*‘:h

Jdt)’wa";v')lf’ [, ln"')[ijPH)‘ﬁr") )

written out in full, this term becomes:

pt!
j””PJ"‘TI/.,.,lP ﬁ{'(va")]f’ ;éPvzo tl’ )fdrfﬂ Llomlf,“ EDF:)UJU tl’ )

= fdfpj@,,, 4o Uiyl t,,)Z; Ly,y,, /{ f, (Ik,t,,)f:/)/ﬂp+,,t,)

J=° jf
= 2 T >,f,i:vz,,t )
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Thus we see that the distribution function remains factored under the
operation of W. By employing the definition, Eq. 20, we may repeat

the operation r times to give:
folt vooflty o Wikt Uodys ot t OWILLh o d o3 b5ty ty )00

-rtl
(1)

L
WUJ,,,,,, [p-ruo 1/9 r; e,o rif; P T F r-) Z {a )/‘//‘b fI’*")
{Zakzr‘)

where the quantity

p~r+/
()
LT
b=0o /ak) (/k) P- r)
(Zak r‘ 1)
is the sum of all products of ¢ such that in each term the sum
of subscripts equals r. Since r 1is arbitrary, we may take

r = p to give the final result:

1

(1) (] /
P-term-(ga I,» Fanltt)= Zf,,:,,/z,,t)f;,j//,,z) @2

Therefore Eq. 18 may be written:

Mfa)[‘,’?lef.'f)= F:)(fmt)gé”ﬂut %‘? j:‘ “3'31’ (4,t) ’c;)’ ]”t)

= Z g% i g(%.]) Io,t);(]) Ih‘t)

or

462)

(lblft) = hm Z gi f Fl‘)—‘])(‘po)t) /:)) //ﬁt)

}1-)00

= ("Gt g {0t ) ER (z,,t)+o--+ X0 €8 lhtyrees )
- f(')(fa/.t))((/)(l’,,f)

f Nol, t) = IIM

(23)
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and the theorem is proved. Although we do not use the fact, it may also
be shown that this theorem, along with the general BBGKY equationm,

Eq. 13, shows that the distribution function to any order is factored

for all times in which the treatment is valid.

2. An Approximate Solution of the Non-linear Vlassov Equation.
(2)

The Vlassov equation follows upon inserting the factored £

into the first BBGKY equation, Eq. 14, to give:

I ~  pll IR, ; w, "
{ut)=fo e t) ¢ £ de Jdrl g s bt ) JdT, Loy ) o2

The solution of this equation is obtained formally by summing the
series, Eq. 21, with all the iterates explicitly written. However,
there is no known way of representing this series in closed form.

LD

Therefore, the Vlassov equation is usually linearized in by

f(l) ( L ,t') in the integral on the r.h.s. of Eq. 23

replacing
by 11?(g¢), where (?(%g)is an arbitrary function of the velocity

magnitude and is normalized to unity. The resulting linearized

equation

(25)
Q) _Cr T, / (n ;
; {"(It)*;'; (J)f) *’WFfC[f fd‘dg{d;t;t)fol-gf lee1 (-f(yo() ; /[Igt )
has been studied extensively.
The linearized Vlassov equation may be obtained less arbitrarily
by linearizing the recursion relation, Eq. 20. If we suppose that
the plasma is nearly spacially homogeneous, we may write

Q)
(m—;)

(2,0,8) 2 QW) + Uppyyy (4,4 )
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where U, (¢yt) is a "small" quantity. Then if we omit terms of
f\(')

second order in u on the right of Eq. 20, we may define ;On)

by the recursion

(1) S0
Fom () = e[ 615, E )T, Ly 00 Ty 11, ) )(26’
(m21

But this equation is just the iterated form of Eq. 25, and it is

clear therefore, that the sum

~J

1%t)= 2, EFfG) ot )
j=o
is the solution to the linear Vlassov equation.
As a second approximation to the solution of the full Vlassov
equation (regarding the linear equation as the first), it is suggestive
to replace the recursion for fgig s> Eq. 20, by its linearized relative,

Eq. 26. The proof of the factorization proceeds as before, and we

find that the pair of equations

~ (1) L¢

Fat)= £t ngftfies g st t) g, Loy gar f 1) @7
and

P E) = [0 e) 4 gfdt’/da’yu; L)z, Loy Tl ) F Ly 0) @

give the new result. Since the second equation is explicitly dependent

on the solution of the first, the set is uncoupled if solved in order.
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There is one additional difficulty that prevents a solution of
the pair of equations given above by standard methods; namely, the
presence of the time dependent electric field in the Green's function.
However, if we assume the incident field frequency to be higher than
the plasma frequency, we may average the motion of the electrons over
a period of the former, and recover a Green's function in tractable
form. From Appendix A, we find that the average Green's function

for a harmonic external electric field may be written;

?(ziu/zjy’;é-e-’),w =0Ut-+)8(v-v") fdlgjj /M?;_E)eylo cke(xleryitt))
W, LOe -
(29)
where Wp 1is the frequency of the incident field, and JO is the
zero order Bessel function. Since we alsé have assumed that the
incident field is spacially homogeneous at the outset, we are
limited to a frequency range of a decade or so beginning at the
plasma frequency. This restriction insures that, for the most
part, the scale length of plasma disturbances are small with respect
to the wavelength of the electric field.
The final approximation in solving the pair of equations,
Eqs. 27, and 28, is to replace the Green's functions by the average

expression given above. The set of equations then becomes;

e o (30)

.7( [“Jt):fo (a‘)t) "%F‘[d{,fﬂh’; g[d)'t‘él),qu fﬂlq 1-40(4 Sﬂ{‘/o.)?m(a()f/)
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and

)= £ t) [t [dT g -6y [ty Loy Tt ) UE)

(31)

We may turn to a Fourier-Laplace analysis of the above.

3. Development of a Generalized Dielectric Function.

The linear integral equation for (?(jj is of the Volterra
type in the time variable (a consequence of causality), and because
it is an inhomogeneous equation, possesses a unique solution for each
value of the parameter U)E). Since the equation is a convolution
in time, the Laplace transform of Eq. 30 is a simple algebraic
expression in the Laplace variable. 1In Appendix A, it is also shown
that the Fourier transform of the averaged Green's function is
diagonal in the reciprocal coordinate vector, and is also diagonal
in the velocities; the latter as a result of the averaging procedure.
Therefore, it Eq. 30 were integrated over the velocities, and a
Fourier-Laplace transform taken, the resultant expression could be
solved algebraically. However, the full distribution function and
not simply its first moment is required for the solution of Eq. 31.
Thus a solution by iteration is desirable.

The Fourier-Laplace transform of Eq. 30 is:

(32)

Flewp=Tolbup) , _—drnéo e . 20) fav* T Tl
e (ke e el gl i)

e Lo Re?ﬂ)
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We shall look for the solution to this equation in the form of a
power series in the plasma frequency:

P“UJ( ) 2; T

- 2 lajt}

Folkeep) = £, (kv p) (t0,) (f)(ky

where b)P is related to ? by:
2—-’
p = ATn

The coefficients of various powers of the plasma frequency in the

above sum are given by the Fourier-Laplace transform of the linearized

recursion relation, Eq. 26 (without the n);

~E)

f(z'){kyP)"“: %}D(V)((P ‘ky) (lf-E ) j‘!v” (lrr) -;—,P)

m,
e (33)

Because of the simple velocity dependence of the right side of this
equation, the indicated recursion may be written explicitly with the

aid of the following definition:

R - ’g
‘z(k,P)&-E} :]cl_vg,éﬂ(y){@w‘/g.gh(e_éif 2) . Kep 20

Wel,

The result is

h) (u
. k-
F ol pr=fo e, ,P)-~ 2§l > 120 P)/(P (k) éfwf))

y Z 2%‘( ik }(le”a /e[_'")) (34)

But the sum 1s just a geometric series, and therefore may be summed

/

explicitly to give:

o % -
[l p) - {0k, p )_.-—.2 lf(‘/)%(k’ P)wp((/o i) +/ ek-f 2)1/)(’5,/’,’?'5) !

M o
(35)
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where Mo{é’,P) is the number density (in k,p space) that would

exist if there were no coulomb interactions:

k)= [dy £ (kv p
and DU?;PJ k-E) is the function

DlepkE)=1 +w _g ,f{k p,kE) (36)

If Eq. 35 is integrated over velocities, an equation for the perturbed

number density results:
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Therefore the function Z> plays the role of a dielectric function
(and is one in the linear theory) by 'dressing' the free particle
number density with the global influence of the plasma as a whole.
(A polarization effect).

The integral expression, Eq. 31, may be simplified somewhat if

ey (D) LD

is considered to be the sum of and a correction term,

"I _ (/) ?]C(’) (38)

Further, let us rewrite Eq. 35 with f( ) written explicitly;

? (L?,z,p):(2n)2775(’f){f('/d)/l3 U, (ky, p)

.
F

TR ) ) ey kE,p)/Dl,p, k-E)

(39)
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where,& is the Fourier-Laplace transform of the average Green's

function;

Blon b5 p M- 2 )

and ‘1,(,( by P) is the inhomogeneous part of f(l) ( }_?,Z)P ) and is
" a known function. We now consider the Fourier-laplace transform of

Eq. 31. Let Eq. 39 be substituted for the transform of gktu,t)

that appears on the right in the transformed equation, and also

S w () ¥
replace f(l) by ; +?7c on the left. If the indicated multi-
G )
plications and integrations are carried out, the equation for -f 5

. . . . (*
Eq. 32, is recovered, and the remainder gives an expression for ;’) 5

Fiotd

ey, k )p)] c[p/fd’k/D /(/S'f)/)/é'k')'g,p—/o’)_

[I)x
! (/g,nga) -
(z,r)’éur J ooy

X [i : (?'.‘?’)13, ( ff/” &by, ’))fdvﬂ “r _",/,/'p) (40)

-1 / «
XD(?,- P) - (b ) a uo(k;! /) DI_VM o) k—lf/‘/”/ _ /)
/Ie le’[ 3! llo ]f 7( (- J"lPF

In order to obtain an expression that permits comparison with Eq. 37,
we integrate Eq. 40 over y. Let this quantity be added to a similar

integration of Eq. 39. Then the final result may be written as:
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tiowo+

S r e\ L , , oy (4D
%“glP)zz;I:: fcoo“gj A,D @ (Igllg/P)P/j”a) E)%D(Q'EIP"P)

-1 . . , .
where 33 is a generalized dielectric function;

D lekp,pin, €)= 3() ¢ 2E Jaly Gl £, p)
P'Dlk,kEp)  @r)% ) Dlk-s!(k-6)E p-p’)

o iwh(k-k)k’ 2 (2 0w) L(k'y K'E,p’)) 2elelp) (42)
//;lg’f‘lq’z °2! (?Mff ) )P )D(lg’)/gzg)/,/)

This quantity is the sum of the linear theory dielectric function
given by Eq. 36, and a correction term of order F . The correction
term is simply second order modification of the charge number density
arising from the Coulomb interaction based upon the perturbed charge
density given by the first term, and a prescribed initial inhomogeneity,
u, - The integrals over the dummy variables follow from the form
of the non-linear Vlassov equation, or, in other words, there are no
non-trivial stationary, homogeneous perturbations! Therefore, of
necessity, the convolutional relationship in space-time between the
displacement and electric fields which would be given by the first
term of Eq. 42, alone, is destroyed in second order. The inclusion
of the correction term in any subsequent scattering problem, would,

in principle, give harmonic and sideband generation in some




approximation, or if the first term in the braces is discarded, the
remaining one may be used to base a discussion of instability growth
rates pertinent to many plasma configurations today.

Three main points are discussed in the present work. The first
of these is that the Vlassov equation is the most general description
of plasma phenomena whose frequency spectrum encompasses the plasma
frequency. Lower frequency (longer time) effects are rejected both
in the choice of perturbation series and in the assumption of a
completely factored initial distribution function. The theorem,
which is the core of this derivation, shows that this factorization
persists in distribution functions of all orders at the current time.
Thus the full Vlassov equation follows from the first member of the
BBGKY hierarchy.

The second point is the advantage of dealing with Green's
functions instead of streaming operators when external field effects

are included. It is the choice of a representation of the streaming
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Green's function which permitted the averaging procedure (correspondent

to a random phase approximation) over a period of the incident field
as shown in Appendix A. While it is true that the averaged Green's
function may no longer be an exact 'reciprocal" of the streaming
operator, later solutions of the equations do not require this fact,
and therefore an expression for a plasma dielectric function,
anisotropic in the external field direction, may be derived.

Lastly, the approximate solution to the non-linear Vlassov

equation gives a generalized dielectric function for the plasma

which shows that the relation between electric and displacement fields



&
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in a plasma are no longer completely convolutional in space-time.

The two terms that modify this behaviour describe a second perturbation
of the already perturbed electron density (as derived in the linear
theory), and a perturbation of the initial inhomogeniety in the
electron distribution. Thus, subsequent calculations based upon

this generalized dielectric function might describe both electrical
non~linear effects such as side-band and harmonic generation, and

instability growth in a plasma.
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APPENDIX A

Let us consider an assembly of electrons moving freely in the
influence of an external, sinusoidal, homogeneous, electric field,
but not interacting with each other. For classical electrons, the

equation of motion is:

dy. Esmw,t where £z -ef (A1)
dt e

For this specification of the field, the one-particle Green's

function becomes;

(?{Z)y/ bt ) = §e-¢) 5(!’—@*(! t £ coswot)lt-t') - € (sims,b-simo,t)
o we o

x 8 (v v -£ (cogw,t-coswst’) 2
o

which describes the evolution of the electron from the state (E':l')
at time t' to the state (x,v) at time t.

Unfortunately, the path coupling the electron's initial and
final state depends on the phase of the external electric field,
and thus g depends on the origin of time. This effect is important,
however, only for the electron motion in a time interval comparable
to the period of the external field. Therefore, after finding an
appropriate representation for the Green's function, we may average
it over a period of the external field, and use this result in our
subsequent development. Such an average corresponds to a 'random
phase" approximation in that the averaged Green's function describes

the motion of a typical electron picked at random from the assembly
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of electrons whose initial phases are arbitrary. The information loss,
embodied in this assumption, is reasonable, provided the kinetic theory
is not called upon to describe phenomena close to the external field
frequency. 1In particular, we shall assume (,00 7 (4)’,

Now the Fourier transform of Eq. A2 is given by:

Sky il omiy!

{’/( L’ , . , (BXiimy o
. ) e / / ’ ’l /7
g km| -,@.ét)-(_,,é [dzfdzz dvjdv’ e glz,z/zz,zjt,t)e
= Qlé-¢7)S(k-k’) 5(@—&:’1—&(L“t’))ﬂyp{-a'wvf(wswof‘wswotl) (A3)
Wy

5' , . . / |
tike € (oso b (E-6) - cR-E (S/nwof—SMwo[‘)f
e Wwe
where it is seen that g 1is diagonal only in the reciprocal
length, k. Let us change the time variables from the set t,t'
to the set T, '7 , defined by:
L /
T= £ (tst’)
and
= L ff ¢t
7" 2 /t t )
From the previous equation we then have;

g(kw|ki';9,T) = 6(7) S(Igf/s’)é[m-m?zéw

(A4)

X2¥p L [‘%,_E [ ’—/_<7) Sinloo) SinoT y 2%@ ( 7 eoscor - 3%907) CoswaTJ

The complex exponentials of the trigonometric functions may be

represented by Bessel functions through the definition:

(A5)

cxp(iZSimg) = Z' expln Y)‘I’ ()
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Thus Eq. A4 may be written:

3(/3‘@/1_9,@)7,7'):: (9(_7)cS{lg-ls’)5(*114»_4’+2.'/e»7)2edw""L (25 ['n”*’y)smwy)

Lz
o (A6)
1 (m(w.T+ ﬂ/z) 2k-€
X ,é:_f { {7&%%7— imw’y))
The average over T 1is defined by:
o 21/,
g(lgjfﬂ/é;mjly)m, = .5’20 ]‘: ? (kI’W//e, 77/T)dT
(A7)
:9{4,’)8(%—%’)6{‘(@_ )420’ {__ (m" /e7)5mw 7}I 2k§/7ww7 Smw7/)€

Now on the other hand, we have the sum rule for Bessel functions;

D

J;((a2+l:2+2aéc»oac)z): Z,‘ J;[a.)];/t,)mpd (a8)

D:-ob

From Eq. A7, we see that g is even in A , and thus only (,bSﬂ[/z
contributes to the sum. Therefore, with the sum rule just given,

we may write g as;

g (b |E2’57), = 6(7) S(k-k') J(m~m’+zk7)

2
XI((‘I(k’g)'z__?(E'E)SInwo m"€)Sin w,M 4 oS W, ) (A9)
(|15 - 5 wo*7({“ E)sim o0y # coSUeq.
2. . Y
+4, ((w'€)" (e sintoy ] )
w3 'ZZ}

The argument of the Bessel function may be simplified by noting
that for large ”7 , the first term dominates. Since the average

does not represent the correct behavior for small ‘7 , we introduce

no additional error by neglecting all but the first term. We may
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write the Green's function as:
3(&,&4/1@1@37)“ = 9(7) 3(‘3—‘3’)5(V£~@'*2/3‘7)J; (2_%-’_2 7) (A10)

For our purposes, a more useful representation is obtained by
transforming back to velocity space. The result of this operation

and its time Laplace transform is:

gkttt )y = OlE¢) Sl k-k') 3y-v")

(Al11)

(v (¢-¢
v tEe (et 7 bEe (it))

Wie L0,
and

(A12)

y J - e’ . —Zé' ’ 53 * ‘gi
glexleipl=3te)3tets) fp-cboe s (4 F)

These two equations are the desired result.




31

References

R. Balescu, Phys. Fluids, 3, 52 (1960).

ﬁ. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).

N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).

A. A. Vlassov, J. Exptl. Theoret. Phys. U.S.S.R., 8, 291 (1938).
W. E. Drummond, Phys. Fluids, 7, 816 (1964).

R. Balescu, Statistical Mechanics of Charged Particles,

(Interscience Publishers, A division of John Wiley and Sons,
New York, 1963).
F. C. Andrews, Acad. Roy. Belg. Bull, Classe Sci., 46, 475 (1960).

M. Born and H. S. Green, A General Kinetic Theory of Liquids,

(Cambridge University Press, Cambridge, 1949).



